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620049 Ekaterinburg, Russia

Received 8 January 1997

Abstract. A closed set of the gauge-invariant dynamic equations for a current-carrying plasma-
like medium with dislocation-type and disclination-type topological defects together with the
conditions at strong discontinuities is obtained using the variational principle and discussed.
The dislocation and disclination fields, which compensate the non-homogeneity of the action
of the gauge groupG = SO(3) F T (3), are described in the present theory by inexact external
differential forms. The set of the Cartan structural equations for these forms has a direct
correlation with the continuity equations for topological defects. The integrability conditions
for the equations describing the dynamics of topological defects are obtained. It is shown that
the integrability condition for the equation for disclination fields is equivalent to the balance
equation for the angular momentum of the plasma-like medium together with the magnetic field.
This condition is degenerated in the requirement of symmetry of the total stress tensor in the
case of lack of topological defects. It is also shown that the total tensor of an energy–momentum
of the plasma-like medium and of the magnetic field satisfies the balance equation.

1. Introduction

The aim of the present work is to obtain dynamic equations for current-carrying plasma-like
media (we can classify with them, with minor reservations, unmagnetized solid and liquid
metals), suitable for a theoretical research of non-equilibrium phase transitions. It is known
[1, 2] that the passage of an electric current in a plasma-like medium is accompanied by
excitation of various types of instabilities. These instabilities lead to non-equilibrium phase
transitions, typical examples of which are the electrical explosion of conductors [3–8] and the
structuring of an electric current at the cathode surface in vacuum arcs (formation of current
cells [9, 10] or ectons, on nomenclature [11]). For the mentioned non-equilibrium phase
transitions, the presence of a threshold value of the electric currentI∗, and the generation
of low-temperature plasma with a condensed disperse phase and of high-speed plasma jets
is characteristic. We have shown [8, 12] that hot points or spots [13] are the source of
plasma jets in an electrical explosion of a conductor. The hot points arise as a result of the
localization of the Joule heat source due to the formation of large-scale vortex (hydrodynamic
and current) structures in a current-carrying conductor. (The nonlinear coupling of these
structures with perturbations of the conductor surface is also responsible for the stratification
of the exploding conductor [14, 15].)

It is customary to assume [11] that if special measures are not taken to excite primary
current cells, their nucleation happens as a result of an electrical explosion of micropoints
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on the cathode surface owing to their heating by the emission current. The current cells
are also observed on the surface of liquid–metal cathodes [9]. As an electric field promotes
the growth of micropoints from a liquid metal [16, 17], it is supposed that in this case
their explosion initiates the current cells as well. However, if we assume the possibility
of the existence of mechanisms of localization of the Joule heat source in solid metal as
offered in [12], the formation of current cells is possible on the ‘perfectly smooth’ surface of
the cathode as well. There exists experimental evidence that the electrodynamic processes
occurring in the surface layer of a cathode play the dominant role in the formation of current
cells. (By comparing the results of experiments with film and massive cathodes [9] it has
been established that since the widthh = 1.5× 10−4 cm the results of experiments on film
and massive cathodes coincide.) In solid bodies, topological defects, such as dislocations
and disclinations† are equivalents of large-scale structures. At the solid body boundary,
either the Burgers vector is zero or the dislocation filament is perpendicular to the surface
[19], much as vortex filaments in a liquid are bear up against the walls of the vessel or
against its free surface, or they are closed [20]. The passage of the current across the
dislocation filaments is hampered; therefore, the current has to ‘flow over’ the dislocation
filaments and to approach the cathode surface in between the filaments. This will lead
eventually to the formation of hot points in the surface layer of the cathode, which initiate
primary current cells.

The physical phenomena above are characterized, first, by the threshold nature and,
secondly, by the dominant role of topological defects as vortices in liquids, as dislocations
and disclinations in solid bodies and of the physical processes on surfaces of the external
and internal strong discontinuities. Thus, there is a need to have models of plasma-like
media with topological defects for the explanation of these phenomena. (The present work
is devoted to the construction of such a model.) Topological defects have the result that the
equation of motion

xi = F i(Xα, t) (1)

(with Xα (α = 1, 2, 3) being the coordinates of the reference configuration andxi (i =
1, 2, 3) being the coordinates of the current (actual) configuration of the body (the three-
dimensional domain occupied by the medium)) is not a one-to-one differentiable mapping
(diffeomorphism). In the physics of real crystals [21] it is supposed that the disclinations
and dislocations are the responses of the dynamical system to the break of the rotary and
the translation symmetry, respectively. Therefore, it is possible to use the methods of
the theory of the Yang–Mills fields [22] in the construction of continual models of the
topological defects. (We shall mention papers [19, 23, 24], in which the tools of the gauge
fields are used for solving various problems of the theory of condensed matter. In the
first paper, the most full gauge-invariant theory of the dislocations and disclinations non-
interacting with the electromagnetic field and quasi-particle excitations is constructed for
isotropic solid bodies.)

In the present work we construct a model of the plasma-like medium with topological
defects, using for their description a method offered in [19]. Thus we simultaneously obtain
both the field equations and the boundary conditions, including the conditions at the surfaces

† Two types of topological defects (‘dislocations’) for sources of internal stresses had been entered into the
continuum mechanics by Volterra [18] as far back as 1907. The first type of Volterra dislocations is connected to
a break of the translation symmetry (it is the response to non-homogeneous action of the translation groupT (3));
the second type is connected to a break of the rotary symmetry (it is the response to non-homogeneous action of
the rotation groupSO(3)). At the moment, the translation Volterra dislocations are known as dislocations, and the
rotary Volterra dislocations are known as disclinations.
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of strong discontinuities, using, as in [19], exact and inexact exterior differential forms (in
the appendix we present the minimum of information about them necessary for our aims)
and the base variational equation [25–27]

δ

∫
Lµ̃+ δW̃ ∗ + δW̃ = 0. (2)

In equation (2)L is the Lagrangian,̃µ is the element of a four-dimensional volume
(see the appendix),δW̃ ∗ is the functional determining the specified inflow of energy to the
four-dimensional domain occupied by the medium, andδW̃ is the functional describing
the additional inflow of energy due to the power interactions at the surface of the three-
dimensional domain occupied by the medium. As shown in [27], equation (2) is the
variational analogue of the energy balance equation. (For discontinuous functions, the
first generalized derivatives of which are measures (belonging to the spaceBV ) [28], the
integration in equation (2) should be understood as integration with respect to the measure.)

2. The Lagrangian for a current-carrying plasma-like medium with topological
defects

2.1. The Lagrangian for ‘vacuum’ states

2.1.1. The initial point of the construction of the Lagrangian for slowly varying (‘vacuum’,
in relation to quasi-particle excitations) states of a plasma-like medium with topological
defects is the Lagrangian for a continuous defectless medium, in particular, the Lagrangian
for the elasticity theory. Therefore, we assume, according to [19], that there exist two
spaces: the space of reference configurationsE3 (a three-dimensional Euclidean space with
a global Cartesian coordinate covering{X1, X2, X3}; the system of reference configurations
of an elastic body represents a connected set�3 of non-zero measures of the Euclidean
volume, contained in a star-shaped domain6 of the spaceE3), and the space of current
(actual) configurations∗E3 with a global coordinate covering{x1, x2, x3}. The spacetime
evolution of the elastic continuum is determined by the diffeomorphism

F : �3× [t0, t1] H⇒∗E3× [t0, t1]|xi=F i(Xα,t)
for which the action

Ĩ [F ] =
∫ t1

t0

∫
�3

L0(X
a, F i, ∂aF

i)dX1 ∧ dX2 ∧ dX3 ∧ dt

=
∫ t1

t0

∫
�3

L0(X
a,F , ∂aF )µ ∧ dt

has a stationary value for all diffeomorphisms satisfying the same Dirichlet conditions.
The LagrangianL0 satisfies the invariance conditions relative to the similar action of the
groupG0 = SO(3)0 F T (3)0 (SO(3)0 andT (3)0 are the orthogonal rotation group and the
translation group, respectively) acting on the state vectorF by the rule

∗F = AF + b A ∈ SO(3)0 b ∈ T (3)0
whereA is the orthogonal matrix of the constants andb is the column vector of the constants.

According to the Noether theorem [29], the kinematics of the elastic continuum
follows immediately from the statement of the variational principle and from the invariance
conditions and leads to the nonlinear classical theory of an elastic continuum. On the other
hand, the kinematics of an elastic continuum is uniquely determined by the diffeomorphism
F (equation (1)) and by the continuity and differentiability properties following from it [19].
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(This remains valid for the discontinuous functions belonging to the spaceBV .) Actually,
let us havebi = dF i = ∂aF idXa. It follows that dbi = 0 andb1∧ b2∧ b3|t=t∗ 6= 0. On the
other hand, from dbi = 0 and equation (A13) we obtainbi = dĤbi , whence it follows that
bi = dF i , whereF i = Ĥbi + ki (Ĥ is the homotopy operator (see equation (A9) in the
appendix); if{Xα} are the integral coordinates of ions measured in terms of the translation
vectors of the lattice in the reference configuration{aα}, then we havebi = aiαdXα) and

b1 ∧ b2 ∧ b3|t=t∗ = ∂(F 1, F 2, F 3)

∂(X1, X2, X3)

∣∣∣∣
t=t∗
6= 0.

In the physics of a deformable continuum with topological defects, current configurations
of a body are considered which cannot be obtained from the reference configuration with the
help of the diffeomorphismF . According to [19], the simplest way for their introduction
is the substitution of the conditions

bi = dF i = ∂aF idXa dbi = 0 b1 ∧ b2 ∧ b3|t=t∗ 6= 0 (3)

by the relations

B̃i = B̃iadXa dB̃i 6= 0 B̃1 ∧ B̃2 ∧ B̃3|t=t∗ 6= 0 (4)

({B̃i} is the 1-form of a distortion; d= dXa ∧ ∂a is the four-dimensional external
differentiation operator (see the appendix)). Applying the linear homotopy operatorĤ ,
introduced in equation (A9) and being a converse to the external differentiation operator on
the submodule4(S) of all inexact forms defined on star-shaped domainS to equation (4),
we obtain [19]

B̃i = dĤ B̃i + Ĥ dB̃i = dF i + Ĥ dB̃i F i = Ĥ B̃i + ki. (5)

According to equation (5), the independent 1-forms{B̃i} lead to the appearance of a
completely integrable part, dF i , and of an inexact (non-integrable) part,Ĥ dB̃i , defined
by the 2-form d̃Bi . It is obvious that the part̂H dB̃i is connected to the internal degrees of
freedom (of symmetries) of the elastic continuum with topological defects. (It is just these
degrees of freedom that prevent the realization of the diffeomorphismF , which determines
in a unique manner the current configuration in the case of an elastic defectless body.) In
the physics of real crystals [21] it is customary to assume that topological defects such as
dislocations and disclinations are the response to the non-homogeneous action of the group
G = SO(3)FT (3), relative to which the LagrangianL0 is not invariant. Just the appearance
of defects (of compensating fields [22]) restores the invariance of the original Lagrangian
of the elasticity theory.

A theoretical description of this situation requires, according to the theory of Yang–Mills
fields [22, 30], that the external differentiation operator d= dXa ∧ ∂a be substituted by the
external covariant differentiation operator (see the appendix) D= dXa∧Da (Da = ∂a+ G̃a

is the covariant derivative;G̃a is the 1-form of connectedness [31, 32]). As the group
G = SO(3) F T (3) is not semi-simple, it has no matrix representation acting on the vector
F on the left. The authors of [19] were able to find such a representation and to specify the
construction of the minimal substitution that is necessary for restoring the invariance of the
original Lagrangian relative to the non-homogeneous action of the groupG = SO(3)FT (3)
on the state vectorF

∗F = AF + b A ∈ SO(3) b ∈ T (3).
This minimal substitution has the form [19]

dF H⇒ B̃ = DF + Y = dF + G̃F + Y. (6)



Plasma-like media with defects 6395

In equation (6)G̃ is the (3× 3)-matrix of the 1-forms of connectedness, taking in the Lie
algebra of the groupSO(3) the values

G = Wαgα (7)

where gα are the infinitesimal generating(3 × 3)-matrices of the rotation groupSO(3)
satisfying the known commutative relations [31–33]

[gα, gβ ] = gαgβ − gβgα = cεαβgε. (8)

cεαβ are the structural constants of the Lie algebraG satisfying the relations [31–33]

cεαβ = −cεβα (9)

and the Jacobi identities

cδαβc
ε
δγ + cδβγ cεδα + cδγαcεδβ = 0. (10)

Accordingly, in equation (6)Y is the (3× 3)-matrix of the 1-forms taking the values [19]

Y = Y i ti (11)

(ti = (δi1, δi2, δi3)T are the infinitesimal generating matrices of the translation groupT (3)).
According to the consideration below, the 1-formsWα and Y i are the potentials of the
disclination and dislocation fields, respectively.

Comparison of equation (5) with (6) shows that the 1-formsWα and Y i are inexact
(they belong to the submodule of all inexact forms4(S)) and, according to the property
(A17) of the homotopy operator, they satisfy the inexact gauge conditions

XaWα
a = 0 XaY ia = 0 (Xa0 = 0). (12)

Matrices of the 1-forms̃B, G̃, andY are transformed according to the rules [19]
∗B̃ = d∗F+∗G̃∗F+ ∗Y = AB̃. (13)
∗G = AGA−1 dAA−1, (14)
∗Y = AY db − (AG̃ dA)A−1b. (15)

(In equations (13)–(15) we haveA ∈ SO(3), b ∈ T (3).)
To obtain the minimal substitution (6), the authors of [19] had to revise the description of

the reference configuration accepted in the continuum mechanics [34–36]. (It is known that
the reference configuration is necessary for the introduction of a quantitative measure for
the relative and absolute strains as well as the Piola–Kirchhoff stress tensor defined relative
to this configuration as a measure on surfaces [34].) As the reference configuration in the
classical theory of elastic defectless continua, the so-called natural configuration in which
the strains and stresses are lacking is used [34–36]. The authors of [19], having required the
agreement of the dynamics of defects with the classical theory of elastic continua, defined
the reference configuration as a configuration where strains, stresses, and defects are lacking
(the requirement of the lack of defects is necessary to save the concept of deformation).
In order to include correctly the collective quasi-particle excitations into the mechanics of
the deformable continuum with defects we shall require that the reference configuration be
characterized by a set of translation vectors{aα, α ∈ I3} and by the invariant metric tensor
ĝαβ = aα · aβ . The given metric tensor corresponds to a quite defined power spectrum
of collective quasi-particle excitations (of conduction electrons, phonons, photons, etc),
εr(ĝαβ,p) (p is the quasi-momentum of a quasi-particle excitation of the sortr), which,
in the theory developed below, is assumed to be known. To save the requirements of the
lack of strains and stresses, we shall also require that the external fields (for example, an
electromagnetic or a temperature field) be uniform or lacking in the reference configuration.
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We shall use as the coordinate covering of the space of reference configurationsE4

the Cartesian coordinate covering{Xα, t}, where{Xα} is a set of integral coordinates of
ions (‘atoms’) measured in the vectors of translation of the original lattice,{aα}. Then the
Cauchy strain tensor [19, 34–36]

g̃αβ = ∂αF iδij ∂βF j (16)

coincides with the invariant metric tensor [21, 37] which, in the reference configuration,
takes the form

ĝαβ = aα · aβ. (17)

The relative strain tensor

Ẽαβ = 1
2(g̃αβ − ĝαβ) (18)

is introduced to define the potential energyU of the deformable elastic continuum [34–36].
Below we shall restrict our consideration to the generally accepted square approximation

[38] in the expression for the potential energy of the elastic continuum (here we do not
specify the symmetry of the tensor of the elastic moduli,Mαβζξ )

U = 1
2M

αβζξEαβEζξ . (19)

The Lagrangian of the deformable elastic continuum is then equal to the difference between
the kinetic energy

K = 1
2ρ0∂4F

iδij ∂4F
j

and the potential energy

L0 = K − U(Eαβ) = 1
2ρ0∂4F

iδij ∂4F
j − U(Eαβ)

= 1
2(ρ0∂4F

iδij ∂4F
j −MαβζξEαβEζξ ). (20)

In equation (20),ρ0 is the mass density in the reference configuration. In the deformable
continuum with topological defects, the construction of the minimal substitution in the form
of (6) leads to the substitution of expressions (18) and (20) by relations

Eαβ = 1
2(B̃

i
αδij B̃

j
α − ĝαβ) (21)

L0 = K − U(Eαβ) = 1
2ρ0B̃

i
4δij B̃

j

4 − U(Eαβ) = 1
2(ρ0B̃

i
4δij B̃

j

4 −MαβζξEαβEζξ ). (22)

The Lagrangian (22) is invariant relative to the non-homogeneous action of the gauge
groupG = SO(3) F T (3). According to [22], the minimal substitution (6) requires that the
Lagrangian

LC = L0+ ŝL̂
be introduced instead ofL0(B̃

i), where L̂ is the Lagrangian of the compensating fields
representing a function of the potentials of these fields and of their derivatives;ŝ is the
coupling constant. (Obviously, the LagrangianL̂ should be invariant relative to the non-
homogeneous action of the gauge groupG = SO(3) F T (3).) Direct analogy with the
theory of the Yang–Mills fields [22, 30] and with the Maxwell theory [39] allows us to
obtain explicit expressions for̂L. However, we first have to introduce, according to [19],
definitions of the 3-forms of disclinations̃Oi

Õi = J iw ∧ dt +Ni
w = J αiw µ̃α ∧ dt + niwµ (23)

and of the 2-forms of dislocations̃Di

D̃i = J iϕ ∧ dt + niϕ = J iϕ,αdXα ∧ dt + nαiϕ µ̃α. (24)
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It has been shown [19] that the phenomenological kinematic equations for topological
defects like dislocations and disclinations are satisfied if only if the equations for exterior
differential forms

dÕi = 0 dD̃i = Õi (25)

are satisfied on the domainE4 where spacetime evolution of the continuous medium occurs.
In equations (23) and (24) (see the appendix, where the basis vectors of the spaces of exterior
forms used are introduced),

Ni
ϕ = nαiϕ µ̃α (26)

are the 2-forms of the dislocation density;

J iϕ = J iϕ,αdXα (27)

are the 1-forms of the dislocation flux;

Ni
w = niwµ (28)

are the 3-forms of the disclination density;

J iw = J αiw µ̃α (29)

are the 2-forms of the disclination flux.
The continuity equations (25) permit a set of the first integrals [19]

D̃i = dB̃i + K̃i . (30)

In equation (30), the first term represents an external differential from the 1-form of the
velocity distortion [19]

B̃i = Ṽ idt + b̃iαdXα = B̃iαdXα. (31)

The second term in equation (30) is expressed through the 2-form of the spin torsion as
[19]

K̃i = w̃i ∧ dt + k̃i = −w̃iαdXα ∧ dt + k̃αi µ̃α. (32)

In equations (30) and (32),

k̃i = k̃αi µ̃α (33)

are the 2-forms of the bend torsion;

w̃i = w̃iαdXα (34)

are the 1-forms of the spin;

b̃i = b̃iαdXα (35)

are the 1-forms of the distortion;̃V i are the 0-forms of the velocity. In matrix form,
equations (25) and (30) look like

dÕ = 0 Õ = dD̃ = dK̃ (36)

D̃ = dB̃ + K̃. (37)

In equations (36) and (37)̃B ∈ 31
3,1(E4) is the column vector whose components represent

the 1-forms of the distortion{B̃i}; K̃, D̃ ∈ 32
3,1(E4) are the column vectors with components

being the 2-forms{K̃i}, {D̃i}; Õ ∈ 33
3,1(E4) is the column vector of the 3-forms{Õi}.

The use of the construction of the minimal substitution in the form (6), of the inexact
gauge, and of the set of Cartan structural equations representing a complete system of
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differentials of exterior forms [32, 40, 41], and the identification of the matrix of the 2-
forms of dislocations,̃D, with the Cartan torsion,̃S, and of the matrix of the 1-forms of
distortion,B̃, with the matrix of so-called adjoint 1-forms,h̃ [32], has allowed the authors
of [19] to obtain a representation of the phenomenologically introduced characteristics of
defectsB̃, D̃, K̃, andÕ through compensating fields̃G andY

B̃ = dF + G̃F + Y = DF + Y (38)

D̃ = T̃F + DY (39)

K̃ = G̃ ∧ (DF+ Y) = G̃ ∧ B̃ (40)

Õ = d(T̃F + DY) = dD̃. (41)

In equations (39) and (41),

T̃ = dG̃+ G̃ ∧ G̃ (42)

is the matrix of the 2-forms of curvature. According to [19], matricesD̃ and T̃ are
transformed by the rules

∗D̃ = AD̃ ∗T̃ = AT̃Ã−1. (43)

Equations (38)–(41), written through the components of the corresponding matrices of
exterior forms, look like

B̃i = dF i + G̃i
jF

j + Y i = dF i +WαgiαjF
j + Y i (44)

D̃i = T̃ ij F j + DY i = C̃αgiαjF j + DY i = ( dWα + 1
2c
α
βγW

β ∧Wγ )giαjF
j + DY i (45)

K̃i = G̃i
j ∧ (DF j + Y j ) = Wαgiαj ∧ (DF j + Y j ) (46)

Õi = dD̃i . (47)

The so introduced definitions of the field characteristics of defects and the direct analogy
to the Yang–Mills fields allow us to write the gauge-invariant Lagrangians for the disclination
(LW) and the dislocation (LY) fields as [19]

LW = − 1
2swcαβC̃

α
abg

ac
w g

be
w C̃

β
ce (48)

LY = − 1
2sYδij D̃

i
abg

ac
Y g

be
Y D̃

j
ce. (49)

In equation (48),cαβ = cδαγ cγβδ = cβα is the Killing metric of the semi-simple groupSO(3)
that defines the components of a non-singular matrix [31–33];

gαβw = −δαβ g44
w =

1

cw2
gabw = 0 at a 6= b (50)

T̃ = C̃αgα C̃α = 1
2C̃

α
abdX

a ∧ dXb C̃αab = ∂aWα
b − ∂bWα

a + cαβγWβ
a W

γ

b . (51)

C̃αab is the tensor of the disclination fields, andsw is the coupling constant. In equation (49),

D̃i
ab = ∂aY ib − ∂bY ia + giξj (Wξ

a Y
j

b −Wξ

b Y
j
a + C̃ξabF j ) (52)

is the tensor of the dislocation fields,

g
αβ
Y = −δαβ g44

Y =
1

cY2
gabY = 0 at a 6= b. (53)

sY is the coupling constant. In equations (50) and (53),cw > 0 and cY > 0 are the
propagation constants having dimensions of velocity. (They are equal to the velocity of
light in vacuumc0 only in the relativistic theory.)
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Thus, the Lagrangian of the deformable continuum with topological defects, describing
the slowly varying (vacuum, relative to the quasi-particle excitations) states has the form

LC = L0+ LW + LY = 1
2ρ0B̃

i
4δij B̃

j

4 − 1
2M

αβζξEαβEζξ − 1
2swcαβC̃

α
abg

ac
w g

be
w C̃

β
ce

− 1
2sYδij D̃

i
abg

ac
Y g

be
Y D̃

j
ce. (54)

In the Lagrangian (54), the mass densityρ0 and the tensor of the elastic moduliMαβζξ are
defined in the reference configuration.

2.2. The Lagrangian for quasi-particle excitations

In constructing the Lagrangian for the quasi-particle excitations, we restrict ourselves to the
consideration of conduction electrons and phonons, assuming that their power spectra for
the reference configuration are known. Therefore, the initial point is the description of the
quasi-particle excitations in a deformable defectless lattice.

2.2.1. We shall assume that{Xα} (α ∈ I3) are integral coordinates of ions measured
in terms of the translation vectors of the lattice in the reference configuration{aα}. The
translation vectors define the invariant metric tensorĝαβ = aα · aβ of the original lattice.
The physically infinitesimal (large in comparison with the period of the lattice, but small
in comparison with the distances on which its characteristics change essentially [37])
differential for a motionless defectless latticedr is defined as

dr = dF = aαdXα. (55)

(It can readily be seen that equation (55) is equivalent to (3).)
It is known [42] that the semiclassical wavefunction of an electron belonging to a certain

power zone of a motionless lattice is determined by the asymptotics

ψ(Xα, t) ∼ exp

(
i

h̄
S0(X

α, t)

)
whereS0 is the semiclassical action. For a periodic motionless lattice, the Hamiltonian of the
conduction electrons coincides with an energyεe = εe(kα, ĝαβ) which is a periodic function
of the components of the invariant quasi-momentumkα with a period of 2πh̄ and depends
on the invariant parameters of a unit cell, defined for a defectless lattice by the tensorĝαβ
or its conversêgαβ . The derivatives of the semiclassical action determine the energy and
the quasi-momentum of the conduction electrons in a motionless defectless lattice(

∂S0

∂t

)
Xα

= εe(kα, ĝαβ)

(
∂S0

∂Xα

)
t

= kα.

The semiclassical actionS in a deformable defectless lattice is defined by the transformation
rules for one-electron wavefunctions in the Galilei conversions [43]:

S = S0+mvr − mv
2t

2
(56)

wherem is the mass of a free electron. Differentiating equation (56), it is possible to
obtain an expression for the momentum through which the invariant quasi-momentum of
the conduction electrons in a deformable lattice is expressed (we take this expression as its
definition):

kα = aα · (p−mv). (57)
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The Hamiltonian for the conduction electrons in a deformable defectless lattice is defined
by the derivative

Ȟ (p, r, t) =
(
∂S

∂t

)
r

= εe+ pv − mv
2

2
. (58)

In the Hamiltonian (58)εe = εe(aα(p − mv), ĝαβ) is a periodic function of the quasi-
momentum with a period of 2πh̄, which is defined by local values of the translation vectors
of the direct (or inverse) lattice in a defectless material.

The electron energỹεe in a deformable lattice is determined by the Galilei conversions
[35, 41] ε̃e = εe+ v · p0+mv2/2. In the given equality,p0 is a mean value of the electron
momentum in the reference system withv = 0: p0 = m∂εe/∂p. Hence, we have

ε̃e = εe+mv ∂εe

∂p
+ mv

2

2
= Ke+ Ue (59)

where, as distinct from the Hamiltonian (58), the energyε̃e is a periodic function of the
quasi-momentum. In equation (59),

Ke = mv ∂εe

∂p
+ mv

2

2
(60)

is the ‘kinetic’ energy of the electron,

Ue = ε̃e (61)

is the ‘potential’ energy of the electron.
The kinetic equation for conduction electrons interacting with an electromagnetic field

in a defectless body has the form [37] (belowfe(p, r, t) is the electronic cumulative
distribution function in a current configuration)

∂fe

∂t
+ ∂fe

∂r
· ∂Ȟ
∂p
− ∂fe

∂p
· ∂Ȟ
∂r
− e

(
E + 1

c0

(
∂Ȟ

∂p
×H

))
∂fe

∂p
= δfe

δt

whereδfe/δt is the operator of collisions (below we do not define its form);E andH are
the strengths of the electric and the magnetic field, respectively. The electronic cumulative
distribution function is periodic:

fe(p, r, t) = fe(p+ 2πh̄aα(r, t), r, t).

In [37] it is shown that the acyclic functions can be eliminated from the kinetic equation,
substituting the momentump by the invariant quasi-momentumkα and considering the
function fe(kα, r, t):
∂fe

∂t
+ v · ∂fe

∂r
+ aα · ∂fe

∂r

∂εe

∂kα
− ∂fe

∂kα
aα ·

∂εe

∂r

−e
(
aα ·E′ + 1

c0

∂εe

∂kβ
H ′ · (aα × aβ)

)
∂fe

∂kα
= δfe

δt
. (62)

In equation (62), we have denoted, as in [37],

H ′ =H − mc0

e
(∇ × v) E′ = E + 1

c0
(v ×H)+ m

e

dv

dt

(
d

dt
= ∂

∂t
+ v · ∂

∂r

)
.

(63)

The kinetic equation (62) can be rewritten relative to the reference configuration (we
note that we still consider a defectless body):

df̂e

dt
+ {f̂e, εe} − e

(
g̃αγ E

′γ + 1

c0
eij l g̃

j l

αβa
i
γH
′γ ∂εe

∂kβ

)
∂f̂e

∂kα
= δf̂e

δt
. (64)



Plasma-like media with defects 6401

In equation (64),̃gijαβ = aiαaiβ , g̃αβ = δij g̃ijαβ . E′i = aiγ E′γ , H ′i = aiγH ′γ are the components
of strengths of the electric and the magnetic field in a current configuration, respectively,
E′γ , H ′γ are the same in the reference configuration,

{f̂e, εe} = δαβ
(
∂f̂e

∂Xα

∂εe

∂kβ
− ∂f̂e

∂kβ

∂εe

∂Xα

)
is the Poisson bracket. In equation (64), the electronic cumulative distribution function
f̂e(kα,X

α, t) and the operator of collisionsδf̂e/δt are defined relative to the reference
configuration.

We shall define the element of volume in the momentum space by the expression

µk = dk1 ∧ dk2 ∧ dk3 = 1

3!
eαβγ dkα ∧ dkβ ∧ dkγ . (65)

Then the normalization of the electronic cumulative distribution function in the reference
configuration takes the form

n̂e = 〈f̂e〉 =
∫

2f̂e
µk

(2πh̄)3
. (66)

As the initial point for the description of the conduction electrons in a plasma-like
medium with defects of dislocation and disclination types, we shall use (57), (59), and
(64). We offer for this purpose the following construction of the minimal substitution
(ai = aiαdXα are the exact 1-forms of the translation vectors)

dF i ≡ ai H⇒ B̃i = dF i + G̃i
jF

j + Y i ĝαβ H⇒ g̃αβ = B̃iαδij B̃jβ (67)

εe = εe(kα, ĝαβ) H⇒ εe = εe(kα, g̃αβ) (68)

ε̃e = εe+mv · ∂εe

∂p
+ mv

2

2
H⇒ ε̃e = εe+mδij B̃j4

∂εe

∂pi
+ 1

2
mB̃i4δij B̃

j

4 . (69)

The construction of the minimal substitution (67)–(69) leads to the following change of
the kinetic equation for the electronic cumulative distribution functionf̂e(kα,X

α, t):

df̂e

dt
+ {f̂e, εe} − e

(
g̃αγ E

′γ + 1

c0
eij l g̃

j l

αβB̃
i
γH
′γ ∂εe

∂kβ

)
∂f̂e

∂kα
= δf̂e

δt
. (70)

In equation (70), we shall designateg̃ijαβ = B̃iαB̃iβ , g̃αβ = δij g̃ijαβ , E′i = B̃iγ E′γ ,H ′i = B̃iγH ′γ .
Relation (69), in view of relations (60) and (61), allows us to obtain the Lagrangian for
the conduction electrons in a plasma-like medium with topological defects, identifying it
with the difference of their ‘kinetic’ and ‘potential’ energies averaged by the cumulative
distribution function:

Le = mδij B̃j4
〈
∂εe

∂pi
f̂e

〉
+ 1

2
m〈f̂e〉B̃i4δij B̃j4 − 〈εef̂e〉. (71)

The Lagrangian (71) does not contain the contribution from the operator of electron–phonon
collisions, as it is compensated by the similar contribution from phonon–electron collisions.
It can readily be seen that the Lagrangian (71) is invariant relative to the non-homogeneous
action of the gauge groupG = SO(3) F T (3).

2.2.2. Considering the contribution of phonons to the Lagrangian of a continuous plasma-
like medium with topological defects, we assume that the slow motions (deformations) of
the continuous medium can be separated from the fast motions (oscillations) of atoms in
the deformed lattice with defects.
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The energy of the oscillations of the lattice is known to look like [21, 44]

εph = εph,0+
∑
q

h̄ω(q)Nq. (72)

In equation (72)

εph,0 = h̄
2

∫ ωm

0
ων(ω)dω

is the energy of the zero oscillations of the lattice andν(ω) is the density of the phonon
states. Relation (72) points to the fact that a weakly excited state of an ideal crystal is
equivalent to the ideal gas of quasi-particles (phonons) the energy of each of which is
equal toh̄ω(q) and their number in each state is defined by a set of representation particle
numbers{Nq} (q is a quasi-wavevector). According to the de Brogle principle, the motion
of each quasi-particle is characterized by the velocityv = ∂εph/∂p = ∂ω/∂q and by the
quasi-momentump = h̄q.

The macroscopic state of a defectless crystal is determined by the mean representation
particle numberfs(q), that is the cumulative distribution function of phonons in the state
s. For an equilibrium thermodynamic state of a defectless crystal the mean representation
particle numbers are defined by the Bose cumulative distribution function [44]

〈〈Ns(q)〉〉 = f0(ωs(q)) =
(

exp

(
h̄ωs

kBTph

)
− 1

)−1

wherekB is Boltzmann’s constant,Tph is the temperature of the phonon gas,〈〈. . .〉〉 denotes
an average by the equilibrium thermodynamic state, including the quantum mechanical
average and the statistical average over the Gibbs ensemble.

For δL� λ̄ (δL is the distance on which the macroscopic characteristics of the crystal
vary, λ̄ is the mean wavelength of a phonon) the representations for phonons can also be
saved for a deformable crystal, but, instead of individual normal coordinates, it is necessary
to consider wavepackets belonging to an interval of wavevectorsδq [21]:

δL > 1

δq
> λ̄ or

δq

q
� 1. (73)

The wavepacket (73) can be put in correspondence with an oscillation with a quasi-
wavevectorq, that is a phonon in the stateq, the velocity of which is defined by the group
velocity of the wavepacket

v = ∂ω

∂q
= ∂εph

∂p
.

If the space position of a phonon in a deformed lattice is measured accurate toδx

(λ̄ � δx � δL) (condition δqδx ∼ 1 does not contradict with inequalities (73) [21]),
it is possible to assign a coordinater to the phonon whose quasi-wavevector isq. In this
case the inhomogeneous state of the crystalline lattice also reveals itself in the dependence
of the frequency of the phonons of the sorts (of their Hamiltonian) onr

ωs = ωs(p, ĝαβ(r)) = ωs(q, ĝαβ(r)). (74)

Phonons have a Bose distribution only in the thermodynamic equilibrium. In the general
case it is necessary to solve the kinetic equation for the cumulative distribution function of
the phonons of the sorts: fs(q, r, t) = fs(p, r, t). The number of phonons of the sorts in
an element of volume of the phase spaceµqµ is defined by the relation (µq is the element
of volume in the momentum space (see (65))):

fs(q, r, t)
µqµ

(2πh̄)3
.
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Accordingly, the number of phonons of the sorts moving along some trajectory{r(t), q(t)}
is determined by the kinetic equation similar to the kinetic equation for the conduction
electrons:

∂fs

∂t
+ aβ · ∂fs

∂r

∂εph

∂qβ
− ∂εph

∂r
· aβ

∂fs

∂qβ
= δfs

δt

where {aβ} are the translation vectors,{qβ} are the components of the invariant quasi-
wavevector of a phonon, andδfs/δt is the operator of collisions.

The kinetic equation relative to the reference configuration takes the form

df̂s

dt
+ {f̂s , εph} = δf̂s

δt
. (75)

In equation (75),

{f̂s , εph} = δαβ
(
∂f̂s

∂Xα

∂εph

∂qβ
− ∂f̂s

∂qβ

∂εph

∂Xα

)
is the Poisson bracket, and̂fs(qα,Xα, t) and δf̂s/δt are defined relative to the reference
configuration.

As the initial point for the description of the phonons in a plasma-like medium with
topological defects of the dislocation and disclination types, we shall use equations (74) and
(75), offering the construction of a minimal substitution as follows:

dF i ≡ ai H⇒ B̃i = dF i + G̃i
jF

j + Y i ĝαβ H⇒ g̃αβ = B̃iαδij B̃jβ (76)

εph = εph(qα, ĝαβ) H⇒ εph = εph(qα, g̃αβ). (77)

(For this substitution the kinetic equation (75) for the cumulative distribution function of
phonons is not changed.)

Relation (77) allows us to obtain the Lagrangian for the phonons in the defective
material, identifying it with their energy averaged by the cumulative distribution function
and taken with the reverse sign:

Lph = −
∑
s

〈εphf̂s〉. (78)

One can see that the Lagrangian for the phonons, definiendum (78), is invariant relative to
the non-homogeneous action of the gauge groupG = SO(3) F T (3).

As the theory proposed by us is non-relativistic, the Lagrangian of the plasma-like
medium coupling with an electromagnetic field does not contain the contribution of the
latter, and its equations are considered known. Thus, the Lagrangian for a plasma-like
medium with topological defects takes the form

L = LC+ Le+ Lph = 1

2
ρ0B̃

i
4δij B̃

j

4 +mδij B̃j4
〈
∂εe

∂pi
f̂e

〉
+ 1

2
m〈f̂e〉B̃i4δij B̃j4〈εef̂e〉

−
∑
s

〈εphf̂s〉 − 1

2
MαβζξEαβEζξ− sw

2
cαβC̃

α
abg

ac
w g

be
w C̃

β
ce−

sY

2
δij D̃

i
abg

ac
Y g

be
Y D̃

j
ce.

(79)

3. Equations for an electromagnetic field and the conditions at the surface of moving
discontinuities

As shown in [27], the most sequential way of obtaining the dynamic equations for a
continuous medium coupled with an electromagnetic field is to use special relativity theory.
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The phenomena considered by us are accompanied by hydrodynamic velocities which are
much lower than the velocity of light in vacuum. Moreover, we consider plasma-like media
which are quasi-neutral in most cases except strong discontinuities. Therefore, we assume
that the equations for the electromagnetic field and the boundary conditions, including the
ones at strong discontinuities, are known. (This allows us to avoid errors which can appear
because of the combination of relativistic and non-relativistic terms in one Lagrangian.)
Here the contribution of the electromagnetic field and other volumetric forces in the base
variational equation (2) is determined by the termδW ∗ that takes into account the concrete
requirements made on the models constructed [27].

In this section we consider the equations for the electromagnetic field, and the conditions
at strong discontinuities, using exterior differential forms. Here we shall assume that the
functions we consider belong to the spaceBV [28]. Using them, we may reduce the
requirements to the smoothness of the surface of the domain occupied by the medium and
of the surfaces of the internal discontinuities.

We shall define the tensors of the electromagnetic field (let us note that we consider
unmagnetized and unpolarizable plasma-like media)F̃ab andF̃ ab(a ∈ I4) by the expressions
[27] (see also [39, 45, 46])

‖F̃ab‖ =


0 H 3 −H 2 c0E1

−H 3 0 H 1 c0E2

H 2 −H 1 0 c0E3

−c0E1 −c0E2 −c0E3 0

 F̃ab = −F̃ba

‖F̃ ab‖ =


0 H3 −H2 −E1c−1

0

−H3 0 H1 −E2c−1
0

H2 −H1 0 −E3c−1
0

E1c−1
0 E2c−1

0 E3c−1
0 0

 F̃ ab = −F̃ ba.

The tensorF̃ab can be converted tõFab with the help of the tensorgabf

‖gabf ‖ =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 c−2

0

 .
It can readily be shown [39] that

F̃ab = ∂aÃb − ∂bÃa
where‖Ãa‖ = {−A, c0ϕ} is the four-dimensional vector potential of the electromagnetic
field; A andϕ are the vector potential and the scalar potential, respectively.

Let us introduce the 2-form of the electromagnetic field by the relation

F̃ = 1
2F̃abdX

a ∧ dXb. (80)

Since there is no magnetic field source, the 2-formF̃ is exact and

dF̃ = 0. (81)

Equation (81) contains the first pair of Maxwell equations [39]:

∇X ·H = 0 (82)

∇X ×E + 1

c0

∂H

∂t
= 0. (83)

(In equations (82) and (83)∇X is the del in the reference configuration.)
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As we deal with the class of discontinuous functions belonging to the spaceBV [28],
the first pair of conditions at the moving surface of a discontinuity ([. . .] designates the
jump of an arbitrary function on the discontinuity surface;n is the vector normal to the
surface) follows from equations (82) and (83) [35, 36]:

n · [H] = 0 (84)

[Eτ ] = 1

c0
[Hτ ] ×Dσ . (85)

In equations (84) and (85),Dσ is the velocity of the discontinuity surface;τ designates the
tangent direction to the discontinuity surface.

It is known [39] that the second pair of the Maxwell equations is contained in the
equation

∂bF̃
ab = 4π

c0
J̃ a (86)

whereJ̃ a are the contravariant components of the four-dimensional density of the electric
current. Actually, passing to a three-dimensional representation, we obtain

∇X ·E = 4πq̃ (87)

∇X ×H − 1

c0

∂E

∂t
= 4π

c0
j̃. (88)

In equations (87) and (88),̃q andj̃ are the volumetric charge density and the electric current
density, respectively. In a quasi-neutral plasma-like medium, the mean charge density is
zero (̃q = 0); therefore, the displacement current (the second term on the left-hand side of
equation (88)) can be neglected. This cannot be done in the consideration of the second
pair of conditions at the discontinuity surface because the density of the surface charge,q̃σ ,
and the density of the surface current,j̃σ , are not zero in the general case.

Let us introduce the 2-form̃F ∗ and the 3-formJ̃∗ by the relations

F̃ ∗ = 1
2F̃

abµab J̃∗ = J̃ aµa. (89)

Then equation (86) becomes

dF̃ ∗ = 4π

c0
J̃∗. (90)

Applying the operator of external differentiation to equation (90), we shall obtain the
continuity equation for the 4-current̃J∗, which plays the role of the integrability condition
for the Maxwell equations:

dJ̃∗ = 0. (91)

The second pair of conditions at the moving surface of the discontinuity [35, 36] follows
from equations (87) and (88):

n · [E] = 4πq̃σ (92)

[Hτ ] − 1

c0
([E] ×Dσ )τ = 4π

c0
(j̃σ × n). (93)

(In obtaining the last equation, we have neglected all quantities of the order of(c−1
0 Dσ)

2.
Moreover, the surface charge and the surface current are defined in the coordinate system
in which the discontinuity surface is motionless.)
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The following continuity equation for the current at the moving surface of the
discontinuity is equivalent to equation (91) [35]:

∂q̃σ

∂t
+∇σ · j̃σ + n · [j̃] = 0. (94)

In equation (94),∇σ · j̃σ = ∇σ,1j̃1
σ + ∇σ,2j̃2

σ is the surface divergence of the two-
dimensional vector of the surface currentj̃σ ; ∇σ,α (α = 1, 2) is the operator of the
covariant differentiation in the plane tangent to the discontinuity surface in a given point.
Equation (94) determines the flux of the charge particles ‘evaporating’ from the discontinuity
surface or from the boundary of the body.

4. Obtaining the dynamic equations for a plasma-like medium with topological
defects

As the starting point in obtaining the dynamic equations, we use the base variational
equation (2) and Lagrangian (79).

4.1. The case of lack of strong discontinuities

4.1.1. We shall first consider the simplification of no strong discontinuity in the medium
and no flux of charge particles through the boundary of the domain occupied by the medium.
(The equations obtained save their form in the presence of discontinuities.) In this case the
term δW̃ ∗ in equation (2) can be set by the expression

δW̃ ∗ =
∫
�4

{(∂aQ̃a
i − Q̃a

j W
α
a g

j

αi)δF
i + Q̃a

i δY
i
a}µ̃

=
∫
�4

{(dQ̃i + Q̃j ∧ G̃j

i )δF
i − Q̃i ∧ δY i}µ̃. (95)

In equation (95)Q̃a
i are generalized volumetric forces which contain the contribution from

the fields not entering the Lagrangian (e.g., the Lorentz force);δF i andδY ia are the variations
of the diffeomorphismF , and of the potentials of the dislocation fields,Y, respectively.
The second term on the variationδF i in equation (95) points to the physical fact that the
disclination fields curve the space occupied by a deformable continuum.

Let us introduce the designations as follows:

Zai =
∂L

∂B̃ai

Zi = Zai µa. (96)

Here, Zαi = −σαi , σαi is the Piola–Kirchhoff stress tensor [19, 34],Z4
i = Pi is the

momentum,

R̃abi =
∂L

∂D̃i
ab

R̃abi = −R̃bai R̃i = 1

2
R̃abi µab. (97)

H̃ ab
α =

∂L

∂C̃αab

H̃ ab
α =

∂LW

∂C̃αab

H̄ ab
α = H̃ ab

α + R̃abi giαjF j

H̄α = 1

2
H̄ ab
α µab H̃α = 1

2
H̃ ab
α µab. (98)

In equation (98),LW is the part of the Lagrangian (see equation (79)) containing only the
disclination variables.
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We shall introduce the disclination currents by the expressions [19]

J̄ aα =
∂L

∂Wα
a

∣∣∣∣
C̃αab

J̄ α = cαβJ̄β J̄β = J̄ aβ µa

J̄β ∈ 33(E4) J̄ = J̄ αgα (99)

J̃ aα =
∂LW

∂Wα
a

∣∣∣∣
C̃αab

J̃ α = cαβJ̃β J̃β = J̃ aβ µa

J̃β ∈ 33(E4) J̃ = J̃ αgα. (100)

(In equations (98) and (99),cαβ are the components of the inverse Cartan–Killing metric of
the subgroupSO(3).)

In the component-wise form,̃Hab
α , R̃abi , J̄ aα , and J̃ aα look like [19]

H̃ ab
α = −sWgcaWg

db
W cαβC̃

β

cd (101)

R̃abi = −sYδij gacY g
bd
Y {∂cY jd − ∂dY jc + gjαk(Wα

c Y
k
d −Wα

d Y
k
c )+ gjαkC̃αcdF k} (102)

J̄ aα = giαj (Zai F j + 2R̃abi Y
j

b ) (103)

J̃ aα = 2giαj R̃
ab
i B̃

j

b . (104)

Let us now obtain the dynamic equations. The base variational equation (2) in view of
(95), becomes∫
�4

δ(Lµ̃)|F i +
∫
�4

δ(Lµ̃)|Y i +
∫
�4

δ(Lµ̃)|Wα

+
∫
�4

{−(dQ̃i + Q̃j ∧ G̃j

i )δF
i − Q̃i ∧ δY i}µ̃+ δW̃ = 0. (105)

The first term in equation (105) has the form∫
�4

δ(Lµ̃)|F i =
∫
�4

(
∂L

∂F i
− ∂a ∂L

∂(∂aF i)

)
δF iµ̃+

∫
∂�4

∂L

∂(∂aF i)
δF iµa. (106)

Taking into account the definitions made above, we obtain

∂L

∂(∂aF i)
= ∂L

∂B̃ai

= Zai

∂L

∂F i
= ∂L

∂B̃ai

∂B̃ai

∂F i
+ ∂L

∂D̃
j

ab

∂D̃
j

ab

∂F i
= Zaj Wα

a g
j

αi + R̃abj C̃αabgjαi .

Using these expressions and the appropriate differential forms, we can write (106) as∫
�4

δ(Lµ̃)|F i =
∫
�4

(dZi + Zj ∧ G̃j

i + 2R̃j ∧ T̃ ji )δF iµ̃+
∫
∂�4

(Zai µa)δF
i. (107)

We shall obtain the second term in (105) using arguments expressed in [19]. Let
{ζ i, i = 1, 2, 3} be a set of arbitrary 1-forms inducing a variation of the 1-formsY i

Y i H⇒ Y i + εζ i + o(ε) (108)

and a variation of the 2-forms̃Di

D̃i H⇒ D̃i + ε(dζ i + G̃i
j ∧ ζ j )+ o(ε). (109)
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Then an induced variation of the 4-formLµ̃ takes the form

δ(Lµ̃)|Y i =
(
∂L

∂Y ia
δY ia +

∂L

∂D̃i
ab

δD̃i
ab

)
µ̃

= (Zai δY ia + R̃abi δD̃i
ab)µ̃ = −Zi ∧ δY i − 2R̃i ∧ δD̃i . (110)

According to equations (108) and (109), we haveδY i = ζ i , δD̃i = dζ i+G̃i
j∧ζ j . Therefore,

(110) becomes

δ(Lµ̃)|Y i =−Zi ∧ ζ i − 2R̃i ∧ (dζ i + G̃i
j ∧ ζ j )

=−(Zi + 2R̃j ∧ G̃j

i − 2 dR̃i) ∧ ζ i − 2 d(R̃i ∧ ζ i).
Hence, the second term in (105) is defined by the expression∫
�4

δ(Lµ̃)|Y i = −
∫
�4

(Zi + 2R̃j ∧ G̃j

i − 2 dR̃i) ∧ δY i − 2
∫
∂�4

R̃i ∧ δY i. (111)

To find the third term in (105), we may apply similar assumptions. If a set of three
1-forms{ηα, α = 1, 2, 3} induces a variation of the potentials of the disclination fieldsWα,

Wα H⇒ Wα + εηα + o(ε) (112)

and a variation of the tensor of the disclination fieldsC̃α = dWα + 1
2c
α
βγW

β ∧Wγ ,

C̃α H⇒ C̃α + ε(dηα + cαβγWβ ∧ ηγ )+ o(ε) (113)

then we obtain a variation of the 4-formLµ̃, using equations (96)–(104) [19]:

δ(Lµ̃)|Wα =−2δC̃α ∧ H̄α + δWα ∧ J̄α
= ηα ∧ (−2 dH̄α + 2cβγαW

γ ∧ H̄β + J̄α)− 2 d(ηα ∧ H̄α).
This expression allows us to write the third term in equation (105) as∫
�4

δ(Lµ̃)|Wα =
∫
�4

δWα ∧ (−2 dH̄α + 2cβγαW
γ ∧ H̄β + J̄α)− 2

∫
∂�4

δWα ∧ H̄α. (114)

Substituting equations (107), (111), and (114) into (105), we obtain∫
�4

((dẐi + Ẑj ∧ G̃j

i + 2R̃j ∧ T̃ ji )δF iµ̃− (Ẑi + 2R̃j ∧ G̃j

i − 2 dR̃i) ∧ δY i

+δWα ∧ (−2 dH̄α + 2cβγαW
γ ∧ H̄β + J̄α))

−
∫
∂�4

(−(Zai µa)δF i + 2(R̃i ∧ δY i)+ 2(δWα ∧ H̄α))+ δW̃ = 0. (115)

(In (115) we haveẐi = Zi + Q̃i .) The requirement of stationarity of the action allows us
to obtain, from (115) the desired dynamic equations and the expression forδW̃ containing
the boundary conditions:

dẐi + Ẑj ∧ G̃j

i = −2R̃j ∧ T̃ ji (116)

dR̃i − R̃j ∧ G̃j

i = 1
2Ẑi (117)

−2 dH̄α + 2cβγαW
γ ∧ H̄β + J̄α = 0 (118)

δW̃ =
∫
∂�4

(−(Zai µa)δF i + 2(R̃i ∧ δY i)+ 2(δWα ∧ H̄α)). (119)
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As the surface of the domain�3 occupied by the deformable continuum is not a
discontinuity surface, the boundary conditions, which are similar to the relations obtained
in [19], follow from equation (119):

(Zai δF
i)|∂�4µa|∂�4 = 0 (120)

R̃i |∂�4 = (R̃abi µab)|∂�4 = 0 (121)

H̄α|∂�4 = (H̄ aβ
α µ̃β)|∂�4 = ((H̃ aβ

α + R̃aβi giαjF j )µ̃β)|∂�4 = (H̃ aβ
α µ̃β)|∂�4 = 0. (122)

The boundary of the domain occupied by a body or a part of this boundary can be fixed.
In this case the Dirichlet homogeneous boundary condition [19] holds:

δF i |∂�4 = 0. (123)

If we have the generalized forcẽQi on the free surface of a body (in our case it is determined
by the magnetic field, which is continuous if the medium has a finite conductivity and if
fluxes of charged particles from the surface are lacking), the boundary condition is equivalent
to the Neumann homogeneous condition [19]

(Zai µa)|∂�4 = 0. (124)

In [19] it is shown that (118) can be rewritten relative tõHα:

dH̃α − cβγαWγ ∧ H̃β = 1
2 J̃α. (125)

Using the matrices of the exterior forms, we write equations (116), (117), and (125) as

dZ+ Ẑ ∧ G̃ = −2R̃ ∧ T̃ (126)

dR̃− R̃ ∧ G̃ = 1
2Ẑ (127)

dH̃+ G̃ ∧ H̃− H̃ ∧ G̃ = 1
2 J̃. (128)

In equation (126) we havêZ = Z + Q̃. In [19] it is shown thatZ, R̃, and H̃ are
transformed by the rules:∗Z = ZA−1, ∗R̃ = R̃A−1, ∗H̃ = AH̃A−1. For (126) to be
covariant, it is necessary to require that the matrix of generalized forcesQ̃ is transformed
by the rule∗Q̃ = Q̃A−1. Then (126)–(128) will acquire a convenient covariant form:

DẐ = −2R̃ ∧ T̃ (129)

DR̃ = 1
2Ẑ (130)

DH̃ = 1
2 J̃. (131)

As for a purely dislocation material we havẽG = 0, we obtain, instead of
equations (129)–(131), the following dynamic equations:

dẐ = 0 (129′)

dR̃ = 1
2Ẑ. (130′)

4.1.2. The matrices of the 3-formŝZ, J̃ and the matrix of the 1-forms of connectednessG̃
entering (129)–(131) are not arbitrary. The solutions of these equations should satisfy some
restrictions playing the role of integrability conditions. For (129)–(131), they are analogous
to the compatibility conditions for the dynamic equations for a non-conducting isotropic
continuum with topological defects, obtained in [19]:

DDR̃ = 1
2DẐ DDH̃ = 1

2DJ̃.
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According to equations (A27) and (A28), DDR̃ = R̃ ∧ T̃ and DDH̃ = T̃ ∧ H̃ − H̃ ∧ T̃.
Therefore, we have

DẐ = −2R̃ ∧ T̃ DJ̃ = 2(T̃ ∧ H̃− H̃ ∧ T̃). (132)

The latter of equations (132) is zero for Lagrangian (79). Thus, the integrability
condition for equation (131) takes the form [19]

DJ̃ = dJ̃ + G̃ ∧ J̃ + J̃ ∧ G̃ = 0. (133)

According to equations (100) and (104),

J̃ = −2cαβR̃gβ ∧ B̃gα.

As we have Dcαβ = 0 and Dgβ = 0, equation (133) is equivalent to the relation [19]

D(R̃gβ ∧ B̃gα) = 0

or, in view of equations (129)–(131), to the relation

Ẑgβ ∧ B̃ + 2R̃gβ ∧ DB̃ = Ẑgβ ∧ B̃ + 2R̃gβ ∧ D̃ = 0 sinceD̃ = DB̃. (134)

In [19] it is shown thatR̃gβ ∧ D̃ = 0. Therefore, equation (134) takes the form

giαj (Zi + Q̃i) ∧ B̃j = giαj (Zai + Q̃a
i )B̃

j
a = giαj ((Zβi + Q̃β

i )B̃
j

β + (Z4
i + Q̃4

i )B̃
j

4) = 0. (135)

According to equation (96) and Lagrangian (79), the momentum and the Piola–Kirchhoff
stress tensor are defined by the relations

Z4
i = Pi = ρ0δij B̃

j

4 +m〈f̂e〉δij B̃j4 +mδij
〈
∂εe

∂pj
f̂e

〉
= ρ0δij B̃

j

4 +m〈f̂e〉δij B̃j4 +m〈f̂e〉δijujC (136)

(ujC = 〈f̂e〉−1〈(∂εe/∂pj )f̂e〉 is the current (hydrodynamic) velocity of the conduction
electrons)

Zαi = −σαi = −δij B̃jβ(σ αβS + σαβE + σαβP ). (137)

In equation (137),σαβS is the potential part of the stress tensor defined by the expression

σ
αβ

S =
∂LS

∂Eαβ
(138)

(LS is the potential part of the Lagrangian). The contribution of the conduction electrons
and phonons to the stress tensor is defined, respectively, as

σ
αβ
E =

∂〈εef̂e〉
∂Eαβ

(139)

σ
αβ

Ph =
∂6s〈εphf̂s〉
∂Eαβ

. (140)

We shall show thatQ̃α
i = −σαM,i are the components of the stress tensor determined by the

magnetic field and that̃Q4
i = 0. Then equation (135) becomes

giαj (−(σ βi + σβM,i )B̃jβ + (ρ0+m〈f̂e〉)δikB̃k4B̃j4 +m〈f̂e〉δikukCB̃j4) = 0.

Whence we obtain

giαj (σ
β

i + σβM,i )B̃jβ = 0. (141)
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For the case of no magnetic field, condition (141) coincides with an equation being
equivalent to the integrability condition of the equation for the disclination fields obtained
in [19] and, as shown in [19], to the balance equation for the angular momentum in a
deformable non-conducting continuum with defects. Therefore, relation (141) is equivalent
to the balance equation for the angular momentum in a plasma-like medium with topological
defects.

Note that the integrability condition for (129) is satisfied identically, because the 5-form
on the 4-space is zero [19].

4.1.3. Let us consider the energy–momentum tensor for a plasma-like medium with
topological defects. This will allow us to discuss the balance equation for the energy–
momentum and to find explicit expressions for the generalized forces (for the tensorQ̃a

i ).
According to [19], the energy–momentum tensor of a continuous medium with topological
defects has the form

5a
b =

∂L

∂(∂aF i)
∂bF

i + ∂L

∂(∂aY ie )
∂aY

i
e +

∂L

∂(∂aWi
e )
∂aW

i
e − δabL. (142)

We shall present Lagrangian (79) as

L = LE− sYL̄Y − sWL̄W. (143)

In equation (143), we have designated

LE = 1

2
ρ0B̃

i
4δij B̃

j

4 +mδij B̃j4
〈
∂εe

∂pi
f̂e

〉
+ 1

2
m〈f̂e〉B̃i4δij B̃j4 − 〈εef̂e〉

−
∑
s

〈εphf̂s〉 − 1

2
MαβζξEαβEζξ (144)

L̄Y = 1

2
δij D̃

i
abg

ac
Y g

be
Y D̃

j
ce (145)

L̄W = 1

2
cαβC̃

α
abg

ac
w g

be
w C̃

β
ce. (146)

Expression (143) leads to the following splitting of the energy–momentum tensor:

5a
b = 5a

E,b −5a
Y,b −5a

W,b. (147)

In equation (147), designations are as follows:

5a
E,b =

∂LE

∂(∂aF i)
∂bF

i − δabLE = Zai ∂aF i − δabLE (148)

5a
Y,b = sY

(
∂L̄Y

∂(∂aY ie )
∂bY

i
e − δab L̄Y

)
= −2R̃aei (∂bY

i
e + giαjF j∂bWα

e )− δab sYL̄Y (149)

5a
W,b = sW

(
∂L̄W

∂(∂aWi
e )
∂bW

i
e − δab L̄W

)
= −2H̃ ae

α ∂bW
i
e − δab sWL̄W. (150)

The energy–momentum tensor, as known [19, 39], should satisfy the balance equation
for the energy–momentum:

∂a5
a
b = ∂a5a

E,b − ∂a5a
Y,b − ∂a5a

W,b = 0. (151)

We shall introduce designationsFE,b = ∂a5a
E,b, FY,b = ∂a5a

Y,b andFW,b = ∂a5a
W,b. Then

(151) becomes the balance equation for the generalized forces acting in a medium with
topological defects [19]:

FE,b = FY,b + FW,b. (152)
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Let us use equations (129)–(131) for finding an explicit expression for the generalized
forces. We obtain

FE,b = ∂a
(

∂LE

∂(∂aF i)
∂bF

i − δabLE

)
= −∂a(Q̃a

i ∂aF
i)+ gjγ iWγ

a (Z
a
j + Q̃a

j )∂bF
i

+gjγ iC̃γacR̃acj ∂bF i + (Zaj + Q̃a
j )∂b(∂aF

i)− ∂bLE. (153)

The LagrangianLE entering (153) depends onXa, not only through the mappingF i , but
also through the cumulative distribution function of the quasi-particle excitations. Taking
into account the kinetic equations for electrons and phonons, we obtain

∂βLE = gjγ iWγ
a Z

a
j ∂βF

i (154)

∂4LE = gjγ iWγ
a Z

a
j ∂4F

i + ∂α(qαE + qαP). (155)

In equation (155),

qαE = δαβ∂βF iδij
〈
εe
∂Ĥ

∂pj
f̂e

〉
= δαβ

(〈
εe
∂εe

∂pi
f̂e

〉
δij ∂βF

j + 〈εef̂e〉∂4F
iδij ∂βF

j

)
(156)

is the energy flux transferred by the conduction electrons,

qαP = δαβ
∑
s

〈
εph
∂εph

∂pi
f̂s

〉
δij ∂βF

j (157)

is the energy flux transferred by the phonons (as a rule, for a plasma-like medium (for a
metal) we have|qαP| � |qαE|).

In deriving the dynamic equations it was mentioned that for the momentum equation
be covariant, it is necessary that

Q̃a
i =

∂LM

∂B̃ai

. (158)

In equation (158),LM is the contribution of the magnetic field to the summarized Lagrangian
of the medium and of the magnetic fieldLFM, which we shall define below. Let us define
the stress tensor of the magnetic field in the reference configuration by the relation (later
it is shown that the so-defined stress tensor coincides with the deviator of the total stress
tensor of the magnetic field)

σ
αβ
M = −

∂LM

∂Eαβ
= 1

4π
HαHβ. (159)

Taking into account the Maxwell equations, we obtain similarly to equations (154) and (155)

g
j

γ iW
γ
a Q̃

a
j ∂βF

i = ∂βLM (160)

g
j

γ iW
γ
a Q̃

a
j ∂4F

i = ∂4LM − ∂α(qαM − Q̃α
i ∂4F

i). (161)

In equation (161),

qαM =
c0

4π
δαζ ∂ζF

ieijkg̃
jk

βγ E
βHγ (162)

is the Poynting vector in the reference configuration.
Substituting equations (154), (155), (160), and (161) into (153) and taking into account

that, according to [19],

∂b(∂aF
i) = −(∂bY ia + giγjF j∂bWγ

a )
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we obtain

F̃E,β = ∂a((Zai + Q̃a
i )∂βF

i − δaβ(LE+ LM))

= ∂4((Pi + Q̃4
i )∂βF

i)− ∂α((σ αi + σαM,i )∂βF i + δαβ (LE+ LM))

=−(Zai + Q̃a
i )(∂bY

i
a + giγjF j∂bWγ

a )+ gjγ iC̃γacR̃acj ∂βF i
F̃E,4 = ∂a((Zai + Q̃a

i )∂4F
i − δa4(LC+ LM))+ ∂α(qαE + qαP + qαM − Q̃α

i ∂4F
i)

= ∂4((Pi + Q̃4
i )∂4F

i − (LC+ LM))+ ∂α(−σαi ∂4F
i + qαE + qαP + qαM)

= −(Zai + Q̃a
i )(∂4Y

i
a + giγjF j∂4W

γ
a )+ gjγ iC̃γacR̃acj ∂4F

i.

As the theory developed by us is non-relativistic, we haveQ̃4
i ≡ 0 and therefore

LM = −H
2

8π
= − 1

8π
δijH

iHj = − 1

8π
g̃αβH

αHβ. (163)

From expression (159) it follows that

σ
αβ
M = −

∂LM

∂Eαβ
= −2

∂LM

∂g̃αβ
= 1

4π
HαHβ.

Finally, we obtain

F̃E,β = ∂4(Pi∂βF
i)− ∂α((σ αi + σαM,i )∂βF i + δαβ (LE+ LM))

= −(Zai + Q̃a
i )(∂bY

i
a + giγjF j∂bWγ

a )+ gjγ iC̃γacR̃acj ∂βF i (164)

F̃E,4 = ∂4(Pi∂4F
i − (LE+ LM))+ ∂α(−σαi ∂4F

i + qαE + qαP + qαM)
= −(Zai + Q̃a

i )(∂4Y
i
a + giγjF j∂4W

γ
a )+ gjγ iC̃γacR̃acj ∂4F

i. (165)

Acting similarly, we shall obtain expressions forFY,b andFW,b as

FY,b = ∂a5a
Y,b = −(Zai + Q̃a

i )(∂bY
i
a + giγjF j∂bWγ

a )− gkαiR̃eck {2Wα
e (∂bY

i
c + giβjF j∂bWβ

c )

−∂b(Wα
e Y

i
c −Wα

c Y
i
e )+ ∂e(2F i∂bWα

c )− ∂b(F iC̃αec)} (166)

FW,b = ∂a5a
W,b = −J̃ aα ∂bWα

a + cηβγ {2cαηcγ δH̃ ac
δ W

β
a ∂bW

α
c + H̃ ac

η ∂b(W
β
a W

γ
c )}. (167)

We shall note that equation (167) is equivalent to an analogous relation obtained in [19],
since the appropriate dynamic equations for disclination fields are identical. Comparison of
equations (164) and (165) with (166) and (167) shows that the action of the elastic forces
and of the magnetic field on the topological defects is completely compensated. Therefore,
only interactions between the topological defects contribute to the balance equation for the
forces. (The fact that the balance equation for the forces involves no force of interaction
with the magnetic field is completely coordinated with the fact that the media considered by
us are unmagnetized and unpolarizable.) Hence, the final form for the balance equation of
forces acting in a medium with topological defects and a magnetic field, the total energy–
momentum tensor of which looks like

5̃α
β = 5α

β + Q̃α
i ∂βF

i − δαβLM = (Zαi + Q̃α
i )∂βF

i + 2R̃αei (∂βY
i
e + giγjF j∂βWγ

e )

+2H̃ αe
γ ∂βW

γ
e − δαβ (LE+ LM − sYL̄Y − sWL̄W) (168)

5̃4
β = 54

β + Q̃4
i ∂βF

i = Pi∂βF i + 2R̃4e
i (∂βY

i
e + giγjF j∂βWγ

e )+ 2H̃ 4e
γ ∂βW

γ
e (169)

5̃α
4 = Zαi ∂4F

i + qαE + qαP + qαM + 2R̃αei (∂4Y
i
e + giγjF j∂4W

γ
e )+ 2H̃ αe

γ ∂4W
γ
e (170)

5̃4
4 = Pi∂4F

i + 2R̃4e
i (∂4Y

i
e + giγjF j∂4W

γ
e )+ 2H̃ 4e

γ ∂4W
γ
e − (LE+ LM − sYL̄Y − sWL̄W)

(171)
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coincides with the balance equation for the forces acting in a deformable isotropic continuum
with defects, non-interacting with the magnetic field and the quasi-particle excitations [19]

F̃E,b − FY,b − FW,b = gjγ iC̃γacR̃acj ∂bF i + gkαiR̃eck [2Wα
e (∂bY

i
c + giβjF j∂bWβ

c )

−∂b(Wα
e Y

i
c −Wα

c Y
i
e )+ ∂e(2F i∂bWα

c )− ∂b(F iC̃αec)] + J̃ aα ∂bWα
a

+cηβγ [2cαηc
γ δH̃ ac

δ W
β
a ∂bW

α
c + H̃ ac

η ∂b(W
β
a W

γ
c )] = 0. (172)

Equation (172) shows that for purely dislocation materials the balance equation for the
energy–momentum is satisfied identically.

4.2. Conditions at strong discontinuities

Let us obtain the conditions at strong hydrodynamic discontinuities (conditions at strong
electromagnetic discontinuities are given in section 3 (equations (84), (85), (92) and (93)
together with the continuity equation for the electric current (94)). These conditions are
obtained either with the help of passages to the limit in the balance equations for masses,
momenta, and energy in the integrated form [33], or with the help of the respective balance
equations in the differential form written in the class of discontinuous functions belonging
to the spaceBV [28]. In [26, 27] it is suggested that the base variational equation (2) is
used not only for obtaining the dynamic equations and the boundary conditions, but also
for obtaining the conditions at the surfaces of strong discontinuities. (Later we shall use
both methods, so thus our aim is to obtain both the conditions at the discontinuity for the
formsZi , R̃i , andH̄α(H̃α) and an equivalent for the integrability condition (141).)

We write the balance equation for the energy–momentum tensor, taking into account
equations (166)–(169), as two equations:

∂45̃
4
β + ∂α5̃α

β = 0 (173)

∂45̃
4
4+ ∂α5̃α

4 = 0. (174)

The last expression is the energy balance equation for a current-carrying continuous medium
with topological defects. We shall note that in the case of the presence of quasi-particle
excitations (conduction electrons, phonons, etc) (174) should be considered simultaneously
with (129)–(131).

Let the functions considered in the present subsection belong to the spaceBV [28].
Then (173) and (174) are equivalent to the following conditions at the surface of a strong
discontinuity6:

[5̃α
βnα] − [5̃4

β ]DN = 0 (175)

[5̃α
4nα] − [5̃4

4]DN = 0. (176)

In equations (175) and (176),DN = Dσ · n is the normal velocity component at the
discontinuity surface. If the equation of the surface6 has the form=(Xα, t) = =(Xα,X4) =
0, thenDσ is defined by the relation [35]

Dσ = − ∂4=
|∇X=|n. (177)

Preparatory to obtaining conditions at the strong discontinuity with the help of the
base variational equation (2), we shall make a few remarks on the balance of the angular
momentum at the discontinuity surface6. Equation (141), being the integrability condition
for (131) and, simultaneously, the balance equation for the angular momentum in the
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medium with topological defects, is correct on both sides of the discontinuity. Therefore,
we have at the discontinuity

(giαj (σ
β

i + σβM,i)B̃jβ)− = (giαj (σ βi + σβM,i)B̃jβ)+ = 0.

Hence, there is no need to consider the balance equation for the angular momentum at the
strong discontinuity.

Besides the balance equation of the energy–momentum at the discontinuity surface, it
is necessary to obtain conditions for the dislocation and the disclination fields. This can be
done only with the help of the base variational equation (2). It is obvious that the relation
for the momentum balance at a strong discontinuity, which can be obtained with the help
of (2), should coincide with (175). For this purpose it is necessary to introduce respective
alterations in expression (113) forδW ∗. (We have the right to do this because the given
term in the base variational equation refers to the assigned terms in constructing models of
continuous media [25–27].)

Let us defineδW ∗ by the relation

δW̃ ∗ =
∫
�4

{(dQ̃i + Q̃j ∧ G̃j

i )δF
i − Q̃i ∧ δY i}µ̃

−
∫
∂�4+6±

{Q̃a
i + (2R̃abj ∂βY ja + 2H̄ ab

γ ∂βW
γ
a − δaβL)(∂βF i)−1}µaδF i.

Then expression (119) forδW becomes

δW̃ =
∫
∂�4+6±

(−(Zai + Q̃a
i + (2R̃abj ∂βY ja + 2H̄ ab

γ ∂βW
γ
a − δaβL)(∂βF i)−1L)µaδF

i

+2R̃abi µbδY
i
a + 2H̄ ab

α µbδW
α
a )

=
∫
∂�4+6±

(−5̃a
β(∂βF

i)−1µaδF
i + 2R̃abi µbδY

i
a + 2H̄ ab

α µbδW
α
a ).

Hence we obtain the conditions at the strong discontinuity surface, taking into account the
fact that the variationsδF i , δY ia , and δWα

a are independent and continuous (approximate
continuous [28]):

[5̃a
β(∂βF

i)−1µa] = 0 (178)

[R̃abi µb] = −[R̃a4
i ]DN + [R̃aβi nβ ] = 0 (179)

[H̄ ab
α µb] = −[H̄ a4

α ]DN + [H̄ aβ
α nβ ] = 0. (180)

As the mappingF i(Xa) is the integrated response of the system to a perturbation, it
should be expected that it is approximately continuous at the discontinuity surface. In this
case the desired condition for the momentum balance at a strong discontinuity follows from
(178):

[5̃a
βµa] = [5̃α

βnα] − [5̃4
β ]DN = 0. (181)

Besides the conditions at a strong discontinuity obtained above, the mass balance should
hold. In our case, the evolution of the mass densityρ̂ = ρ0 + m〈f̂e〉 in the reference
configuration is determined by the flux̃J αM = δαβ5̃4

β . Introducing the mass 4-current

‖J̃ aM‖ = [J̃ 1
M, J̃

2
M, J̃

3
M, ρ̂]T, we can write the continuity equation for this current, expressing

the invariance of the total mass of the deformable continuum:

dJ̃M = 0 J̃M = J̃ aMµa (182)

or

∂4ρ̂ + ∂αJ̃ αM = 0. (183)
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Assuming, as earlier, that we deal with discontinuous functions belonging to the spaceBV ,
we obtain from (183) the mass balance condition at the strong discontinuity:

−[ρ̂]DN + [J̃ αMnα] = 0. (184)

5. Discussion

The phenomenological characteristics of the topological defects (distortionb̃iα, velocity Ṽ i ,
dislocation densitynαiϕ , dislocation fluxJ iϕ,α, spinw̃iα, bend torsioñkαi , disclination density
niw, and disclination fluxJ αiw ) can be expressed through the fieldsF i , Wα

a , andY ia with the
help of equations (23), (24), (31), (32), and (44)–(47):

b̃iα = ∂αF i + giβjF jWβ
α + Y iα (185)

Ṽ i = ∂4F
i + giβjF jWβ

4 + Y i4 (186)

J iϕ,α = giβj (Wβ
α Y

j

4 −Wβ

4 Y
j
α + F j (∂αWβ

4 − ∂4W
β
α + cβγ κWγ

α W
κ
4 ))+ ∂αY i4 − ∂4Y

i
α (187)

nαiϕ = eαζξ (∂ζ Y iξ − ∂ξY iζ + giβj (Wβ

ζ Y
j

ξ −Wβ

ξ Y
j

ζ + F j (∂ζWβ

ξ − ∂ξWβ

ζ + cβγ κWγ

ζ W
κ
ξ ))) (188)

w̃iα = Wζ
α g

i
ζj (∂4F

j +Wκ
4 g

j

κlF
l + Y j4 ) (189)

k̃αi = eαβγWζ
β g

i
ζj (∂γ F

j +Wκ
γ g

j

κlF
l + Y jγ ) (190)

J αiw = eαζξ (∂ζ (Wβ

ξ Y
j

4 −Wβ

4 Y
j

ξ + C̃βξ4F
j )+ ∂4(W

β

ζ Y
j

ξ −Wβ

ξ Y
j

ζ + C̃βζξF j ))giβj (191)

niw = eαζξ ∂α(Wβ

ζ Y
j

ξ −Wβ

ξ Y
j

ζ + C̃βζξF j )giβj . (192)

Equations (185)–(192) are substantially simplified for a purely dislocation material

b̃iα = ∂αF i + Y iα (193)

Ṽ i = ∂4F
i + Y i4 (194)

J iϕ,α = ∂αY i4 − ∂4Y
i
α (195)

nαiϕ = eαζξ (∂ζ Y iξ − ∂ξY iζ ). (196)

It is known [19, 21] that the Burgers vector (aB) for closed curves and the Frank vector
(aF) for closed two-dimensional surfaces are observable variables in the theory of topological
defects. According to [19], we have

aiF(∂�3) =
∫
∂�3

(T̃ ij F
j )|t=const+

∫
∂�3

(G̃i
j ∧ Y j )|t=const (197)

aiB(∂62) =
∫
∂62

Y i |t=const+
∫
∂62

Ĥ3(G̃
i
jF

j )|t=const. (198)

In equations (197) and (198),�3 is a closed domain of the three-dimensional space occupied
by a continuous medium with boundary∂�3 which is a closed two-dimensional surface in
E3; 62 is a closed two-dimensional surface with boundary∂62 which is a closed curve.

For a purely dislocation material(Wα ≡ 0), the following equalities hold [19]:

aiF(∂�3) = 0 for ∀∂�3

aiB(∂62) =
∫
∂62

Y i |t=const=
∫
62

dY i |t=const for ∀∂62. (199)

From equations (197) and (198) it follows that the exact part of the 1-forms of the
velocity distortion do not contribute to the Burgers vectoraiB(∂62) for the 1-curves and to
the Frank vectoraiF(∂�3) for the 2-curves. However, the functionsF i(Xζ , t), as shown in
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[19], determine identically a current configuration of the body through the coordinates{Xζ }
of the reference configuration. Let [19]

η : [0, 1] H⇒ E4|X̄α = λXα t̄ = λt for ∀λ ∈ [0, 1] (200)

be the line (mapping) connecting the pointP0(0, 0, 0, 0) with the pointP1(X
1, X2, X3, t)

in E4. This mapping induces the reversible relations [19]

η∗dX̄α = Xαdλ η∗dt̄ = tdλ
for the 1-forms on the interval [0, 1] for each pointP 1(X1, X2, X3, t) in E4. Defining
xi(Xa) as integrals over paths (200) [19],

xi(Xa) =
∫

[0,1]
η∗B̃i

we shall obtain

xi(Xζ , t) =
∫ 1

0
{∂aF i +Wα

a g
i
αjF

j + Y ia}(λXζ , λt)Xadλ

= F i(Xζ , t)− F i(0ζ , 0)+ ξ i
where

ξ =
∫ 1

0
Xa{Wα

a g
i
αjF

j + Y ia}(λXζ , λt)dλ. (201)

As we haveXa = λXa(1/λ), equation (202) takes the form

ξ =
∫ 1

0
{XaWα

a g
i
αjF

j +XaY ia}(λXζ , λt)
dλ

λ
.

Because the 1-formsY i and Wα
a are inexact forms (they satisfy the inexact gauge

conditions (12) in any pointXa ∈ E4, including the point{λXζ , λt} for ∀λ ∈ [0, 1]),
ξ i = 0 and

xi(Xζ , t) = F i(Xζ , t)− F i(0ζ , 0). (202)

Thus the mapping of the reference configuration of a body with defects is realized in
the current configuration as an integration of the 1-forms of the distortion along the lines
(200), whereas in the case of defectless materials, the path of integration from the pointP0

to the pointP1 is arbitrary:

xi(Xa) = F i(Xa)− F i(0a) =
∫ P1

P0

B̃i =
∫ P1

P0

dF i.

(In [19] it is noted that the lines (200) are a generalization of the virtual quasi-static processes
considered in thermodynamics.)

The homotopy operator (A9) introduces, in the calculation of the field characteristics of
topological defects (see (185)–(192)), integrated operators of the type [19]

Ik〈ϕ〉(Xα, t) =
∫ 1

0
λkϕ(λXα, λt)dλ (203)

(ϕ(Xα, t) is an arbitrary field variable). It is obvious that the operators (203) make the theory
of topological defects interacting with quasi-particle excitations and with the magnetic field
non-local in time and space. Thus, from equation (125) it follows that a direct coupling
between the disclination fields and the magnetic field is formally lacking. This coupling
is indirect as the tensor̃Hab

α is determined by the tensor̃Rabi and by the 1-forms of the
distortion velocityB̃i (see (110)), the spacetime evolution of which is described by (123) and
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(124). (According to these equations, the momentum and summarized stress tensor of the
medium and of the magnetic field, containing the contribution of quasi-particle excitations,
are the source of the dislocation fields.)

The way of introducing quasi-particle excitations (phonons and conduction electrons)
present in a medium with topological defects through the construction of the minimal
substitution in the form of equations (67)–(69) for electrons and (76) and (77) for phonons
which we have offered is practically equivalent to the well known approximation of the
mean field. Deviations (fluctuations) from the mean field can be taken into account with
the help of the operators of electron–phonon and phonon–electron collisions. (To construct
their models a so-called diffraction model of metal [47], which is applicable for metals with
defects, and the concepts expressed by us in [48], in obtaining the transport coefficients for
defectless plasma-like media can be used. This problem will be considered in other work.)

Note that the ground state (or the vacuum state relative to the quasi-particle excitations
of a the medium with defects) depends on the mean energy of excitations similar to how
in quantum field theory it is determined at finite temperatures by the temperature [49]. In
our case, this is equivalent to the appearance of a dependence of the mass densityρ0 on the
mean energy of quasi-particle excitations even in a defectless material. In the presence of
topological defects, the ground state depends not only on the mean energy of quasi-particle
excitations, but also on the field characteristics of the defects. Moreover, the present theory
of topological defects interacting with quasi-particle excitations and with a magnetic field
is nonlinear and non-local. Therefore, it is possible to induce instabilities leading to a
break of the unique connection, in the sense of (202), between the reference and the actual
configuration. In this case, the current state of a deformable continuum with topological
defects will be determined by more than one reference configuration with incommensurable
symmetries. It is obvious that a more common description of the dynamics of a deformable
medium with topological defects interacting with quasi-particle excitations should take into
account the mentioned situation from the very beginning. (It is planned to consider one
possible way of solving this problem in another work.)

We have used a method of obtaining the dynamic equations which, in view of the non-
relativistic character of motions of a continuous medium and of the relativistic Maxwell
equations, represents a combination of the variational principle in the form offered in
[26, 27] and of the requirement according to which the balance equation for the total
energy–momentum tensor of a plasma-like medium and of the magnetic field should be
satisfied. (Note that the requirement of satisfaction of the conservation laws, in particular,
the energy balance equation, since the Landau pioneering work on the theory of superfluidity
of helium II [50, 51], is widely used to construct continuous models of quantum [37, 52–54]
and classical [55–57] multivelocity continua.) The use of the base variational equation (2)
has allowed us to obtain a gauge-covariant system of the dynamic equations (129)–(131)
and conditions at strong discontinuities (179)–(182). The requirement of satisfaction of the
balance equation for the total energy–momentum tensor of the plasma-like medium with
defects and of the magnetic field has offered us a non-contradictory way to include the
coupling between the magnetic field and defects in the present theory. An investigation
of the integrability condition of the equation for disclination fields has shown that it is
equivalent to the balance equation for the angular momentum in a plasma-like medium with
topological defects. In the case of lack of a magnetic field and defects, this condition is
degenerated into the requirement of symmetry of the Cauchy stress tensor. An analysis of
the force balance in the present theory has shown that the magnetic field does not make a
direct contribution to the interactions between topological defects which correlates with the
fact that the plasma-like media considered are unmagnetized and unpolarizable.
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Thus, the system of dynamic equations (129)–(131) obtained, together with the condition
of integrability (161), the energy balance equation (194), the kinetic equations for electrons
and phonons, and the Maxwell equations, with the appropriate conditions at the boundary
of the domain occupied by the medium and at the strong discontinuity surfaces, is self-
consistent and closed and can be used to solve the physical problems formulated in the
introduction.
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Appendix. The exact and inexact differential forms

Following [19] (also see [31, 32, 40, 41, 58, 59]), we shall consider the minimum information
about the exterior differential forms that is necessary for our aims. In addition, we assume
that the considered functions belong to the spaceBV containing discontinuous functions,
the first generalized derivatives of which are measures [28].

The ‘physical’ space in which an evolution of a continuous medium proceeds is an
Euclidean space (Euclidean manifold)E4 with the Cartesian coordinate covering{Xa, a ∈
I4 = {1, 2, 3, 4}} (coordinateX4 corresponds to timet). Let us agree to use the lower-case
greekα, β, γ, . . . and latin characters, beginning fromi, for the designation of indices from
the setI3. The lower-case latin characters froma to h, similarly to [19], we use for the
designation of indices from the setI4. Thus, as usually, the presence in the formulae of
repeating or umbral indices points to the fact that a summation is performed over these
indices.

We shall designate the set of all functionsϕ(Xa) ∈ BV (E4) as30. These functions
are scalars or 0-forms. (Below we shall assume thatBV (E4) = E4 = BV .) The exterior
differential forms of degreek (k-forms) defined onBV (E4) will be designated as3a(E4).
The set34(E4), defined onBV represents the one-dimensional vector space with a natural
base{µ̃}. We shall designate the element of volume inE4 as

µ̃ = dX1 ∧ dX2 ∧ dX3 ∧ dX4 = 1

4!
eabcf dX

a ∧ dXb ∧ dXc ∧ dXf . (A1)

In equation (A1),eabcf is a component of the Levi-Civita tensor, and the external product
is designated by∧. Let us designate the three-dimensional element of volume in spaceE3

asµ = DX1 ∧ dX2 ∧ dX3. Therefore, we havẽµ = µ ∧ dt .
In differential geometry, aT (E4) space tangential toE4 is introduced for which the

derivatives{∂a = ∂/∂Xa}, understood as measures, can be used as a natural base. The
elementv ∈ T (E4) is determined by the expressionv = va(Xb)∂a, whereXb is a contact
point of spaceT (E4) to E4. (As an example of a space tangential toE4 it is possible to
cite the vector field of the velocities of the points of a deformable continuous medium.)
The dual base of the spaceT (E4) for the base{∂1, ∂2, ∂3, ∂4} is the natural base of the
four-dimensional space31(E4) of all 1-forms defined onBV {dX1, dX2, dX3, dX4}.
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The inverse (bijective) generating base of the vector space of the 3-forms33(E4) of

dimension

(
4
3

)
has the form [19]

µa = ∂a · µ̃ = 1

3!
eabcf dX

b ∧ dXc ∧ dXf . (A2)

In equation (A2) and below, the symbol ‘·’ designates an internal (scalar) product.
Introducing the operator of external differentiation d= dXa ∧ ∂a, it can be shown [19]
that the baseµa satisfies the equalities

dµa = 0 dXa ∧ µb = δab µ̃. (A3)

(δab = 1 at a = b; δab = 0 at a 6= b.)

According to [19], the bijective base of the

(
4
2

)
-dimensional space of all 2-forms

32(E4) is given by

µab = ∂a · µb = ∂a · (∂b · µ̃) for a < b. (A4)

This base has the following properties [19]:

µab = −µba dµab = 0 dXc ∧ µab = δcaµb − δcbµa. (A5)

In equations (A3)–(A5), d is the four-dimensional operator of external differentiation:

d= dXa ∧ ∂a = dXα ∧ ∂α + dt ∧ ∂4 = d̄+ dt ∧ ∂4. (A6)

d̄= dXα ∧ ∂α is the three-dimensional operator of external differentiation.
From equation (A6) we have the following equalities [19]:

∂4 · µ̃ = 0 ∂4 · dt = 1 ∂α · dt = 0 ∂α · µ̃ = µ̃α. (A7)

In equation (A7),{µ̃α} is the bijective generating base of the

(
3
2

)
-dimensional space

32(E3) of all 2-forms defined onBV (E3). Then we have

µa = (∂a · µ) ∧ dt − µ ∧ (∂a ∧ dt) = δαa µ̃α ∧ dt − δ4
aµ. (A8)

The bases introduced by equations (A2)–(A8) allow us to define arbitraryk-forms. For
example, the arbitrary 3-formK ∈ BV (BV ⊆ E4) is uniquely defined in a base of the(

4
3

)
-dimensional space33(E4) by the expression

K = Kaµa = Kαµα +K4µ4 = Kαµ̃α ∧ dt −K4µ

with its differential given by the relation

dK = (d̄(Kαµ̃α)+ ∂4K
4µ) ∧ dt = (∂αKα + ∂4K

4)µ ∧ dt.
Accordingly, the arbitrary 2-formo defined onBV (E4) can uniquely be expressed through
the 1-formr = rαdXα and the 2-formh = hαµ̃α [19]:

o = r ∧ dt + h = rαdXα ∧ dt + hαµ̃α.
Its external differential has the form

do = (d̄r + ∂4h) ∧ dt + d̄h = (d̄(rαdXα)+ (∂4h
α)µ̃α) ∧ dt + d̄(hαµ̃α).

For the construction of models of continuous media with topological defects it is
essential that the operator of an external differentiation leads to a splitting of the space
3(E4) into two subspaces, one of which contains all exact (closed) forms. (The element
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o ∈ 3(E4) is closed if only if do = 0. The elemento ∈ 3(E4) is named exact if there is
an elements ∈ 3(E4), such thato = ds.) The set of all exact (closed) forms makes up the
subspaceϒ(E4)(ϒ̃(E4)) over spaceR, but not over30(E4)):ϒ(E4) ⊂ ϒ̃(E4) [19]. If S
is a domain inE4, which can be contracted to a point (S by a smooth map is a star-shaped
domain relative to this point called a centre), then, according to the Poincare-lemma [58],
we haveϒ̃(S) ⊂ ϒ(S). Therefore, if ddo = 0 for o ∈ S, there is an elements ∈ S, such
that o = ds.

We shall designate through3k
p,q(E4) the space of all (p×q)-matrices whose components

are the exterior differentialk-forms defined onBV (E4). ThenK ∈ 33
3,1(E4) is the column

matrix of the 3-forms onE4, andK∗ ∈ 33
1,3(E4) is the row matrix of the 3-forms.

Let us consider the second subspace into which the space3(E4) is subdivided by the
operation of external differentiation. Let

w = wa1...ak (X
b)dXa1 ∧ · · · ∧ dXak

be an exterior differential form. Following [19], we shall define the linear integral homotopy
operatorĤ on a certain star-shaped domainS in E4 with its centre(Xa) relating to the
given coordinate covering, understanding by the integral an integration with respect to a
measure (note that the use of inexact forms introduces, by means of the homotopy operator,
a non-localization in time and space into the continuous theory of topological defects)

Ĥw =
∫ 1

0
λk−1ℵ · w̃(λ)dλ. (A9)

In equation (A9) we have designated

ℵ = (Xa −Xa0)∂a (A10)

w̃(λ) = wa1...ak (X
b
0 + λ(Xb −Xb0))dXa1 ∧ · · · ∧ dXak . (A11)

The homotopy operator has the following properties [19]:
(1)

Ĥ : 3k(S) H⇒ 3k−1(S) for k > 1 Ĥ30(S) = 0 (A12)

(2)

dĤ + Ĥ d= Î for k > 1 (A13)

(Ĥ df )(Xa) = f (Xa)− f (Xa0) for k = 0 (A14)

(3)

Ĥ Ĥw(Xa) = 0 Ĥw(Xa0) = 0 (A15)

(4)

Ĥ dĤ = Ĥ dĤ d= d (A16)

(5)

ℵ · Ĥ = 0 Ĥℵ· = 0. (A17)

According to equation (A13), any formw ∈ 3k(S)(k > 1) satisfies the equality

W = dĤw + Ĥ dw.

The elementwE = dĤw ∈ ϒ(S) is the exact part of the formw. (The elements of the
space30(S) do not contain an exact partw.) Let us designate

wA = Ĥ dw = w − wE.
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According to equation (A15),̂HwA = 0. Hence,wA belongs to the kernel of the homotopy
operator, designated as kerĤ : wA ∈ kerĤ . The elementwA ∈ 3k(S) is called the inexact
part of the formw. The set of all inexact differential forms from3k(S) is designated as
4k(S), and30(S) is identified with the space40(S). The set of all inexact forms onS is
designated as4(S) and represents a submodule of the space3(S) (4(S) ⊆ 3(S) is such
that the mapping4(S) × 4(S) H⇒ 4̃(S) ⊆ 4(S) satisfies the conditions of distributivity
(x(u+ v) = xu+xv; (x+y)u = xu+yu), associativity (xy(v) = x(yv)), and the property
of being unitary (1· v = v). Hence, the subspace4(S) is closed relative to the operation
of the external product: each set4k(S) represents a vector space over30(S), such that
4k(S) ∧ 4m(S) ⊆ 4k+m(S) and the external product of elements kerĤ belongs again to
kerĤ . If w ∈ 3k(S) for k > 1, thenw ∈ kerĤ and the first equation from equations (A15)
gives

w = Ĥ dw for ∀w ∈ 4k, k > 1. (A18)

Expression (A18) shows that the linear homotopy operator is converse relative to the operator
of external differentiation on the submodule4(S).

Let us define the four-dimensional covariant operator of external differentiation by the
expression [19]

D = dXa ∧Da Da = ∂a + G̃a. (A19)

In equation (A19)Da is the covariant derivative and̃Ga is the 1-form of connectedness. If
h̃ is the matrix of thek-forms which are transformed by the rule∗h̃ = Ah̃, A ∈ G, then its
covariant derivative

Dh̃ = dh̃ + G̃ ∧ h̃ (A20)

will be transformed by the rule [19]
∗D(∗h̃) = A(Dh̃). (A21)

If r̃ is the matrix of thek-forms which are transformed by the rule∗ r̃ = r̃A−1, A ∈ G, then
its covariant derivative

Dr̃ = dr̃ − (−1)k r̃ ∧ G̃ (A22)

will be transformed according to the rule [19]
∗D(∗ r̃) = (Dr̃)A−1. (A23)

Finally, if s̃ is the matrix of thek-forms which are transformed by the rule∗s̃ = As̃A−1,
A ∈ G, then its covariant derivative

Ds̃ = ds̃ + G̃ ∧ s̃ − (−1)k s̃ ∧ G̃ (A24)

will be transformed according to the rule [19]
∗D(∗s̃) = A(Ds̃)A−1. (A25)

Applying the covariant operator of external differentiation to equations (A20), (A22),
and (A24), we obtain [19]

DDh̃ = T̃ ∧ h̃ (A26)

DDr̃ = −r̃ ∧ T̃ (A27)

DDs̃ = T̃ ∧ s̃ − s̃ ∧ T̃. (A28)

In equations (A26), (A27), and (A28),̃T = dG̃ + G̃ ∧ G̃ is the matrix of the 2-forms of
curvature, which is transformed by the second of the rules (44).
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